

PRIMARY INJECTION CIRCUIT BREAKER TEST SET

INSTRUCTION MANUAL

Models PI-2500 and PI-5000

Electrical Test Instruments, LLC.

1301 Avondale Road, Suite J New Windsor, MD 21776

www.ETIPrecision.com

(410) 857-1880 Fax (410) 857-1387

TABLE OF CONTENTS

SECTION I: GENERAL INFORMATION and SPECIFICATIONS

WARNING	-]
Introduction	1-2
General Description	1-2
Monitor and Controller MAC-20	1-5
Proposed Enhancements	1-5
Advantages Compared to Other Test Sets	1-6
Trademarks	1-6
PI2500 Specifications	1-7
PI5000 Specifications	1-7
MAC-20 Specifications	1-8

SECTION II: DETAILED DESCRIPTION

Theory of Operation	
High Current Test Sets	-1
PI-2500 Main Circuitry	-]
PI-2500 Control Circuitry	-1
AUX-5000 Main Circuitry	-1
AUX-5000 Control Circuitry	-]
PI-2500 Indicator Control Panel Circuitry	-4
MAC-20 Monitor Controller Circuitry	-4
MAC-20 Software	11-5
Major Parts Identification and Operation	
MAC-20 Control Panel	11-6
MAC-20 Internal Parts	11-9
Figure II-1: Front Panel	11-10
Indicator Control Panel	-11
Figure II-2: Retrofit Indicator Panel	11-12

SECTION III: MAC-21 Monitor and Controller

MAC-21 Specifications	-1
MAC-21 Unit Circuitry	-2
MAC-21 Software	111-2
MAC-21 Parts Identification and Operation	-4
MAC-21 Internal Parts	-8
Figure II-1: Front Panel	-9
Maintenance and Calibration of MAC-21	111-10
Parts List (MAC-21)	111-12
Overall Schematic (MAC-21)	111-13

SECTION IV: OPERATING INSTRUCTIONS

Pre-Test Installation and Setup	IV-1
Basic Guidelines and Suggestions	IV-3
Single Pole Molded Case Breakers	IV-4
Multi-pole Molded Case Breakers	IV-7
Low Voltage Power Breakers	IV-10
Motor Overload Relays	IV-14
Ratioing Current Transformers	IV-16

SECTION V: SERVICE INFORMATION AND DOCUMENTATION

Maintenance and Calibration of PI-4000B	V-1
Maintenance and Calibration of MAC-20	V-1
Parts List (PI-2500)	V-4
Parts List (AUXI-5000)	V-4
Parts List (Indicator Control Panel)	V-5
Parts List (MAC-20)	V-6
Overall Schematic (PI-2500)	V-7
Overall Schematic (AUX-5000)	V-7
Overall Schematic (Indicator Control Panel)	V-8
Overall Schematic (MAC-20)	V-9
Warranty	END
Additional Schematics	END

==

SECTION I

GENERAL INFORMATION

SECTION I

GENERAL INFORMATION

WARNING

WARNING - READ THIS ENTIRE MANUAL AND THOROUGHLY FAMILIARIZE YOURSELF WITH THE UNIT OPERATION PRIOR TO CONNECTING THE UNIT TO A SOURCE OF POWER. HIGH CURRENT TEST SETS ARE NORMALLY POWERED FROM HIGH CAPACITY 208 VOLT TO 575 VOLT SERVICES, AND IMPROPER CONNECTION OR OPERATION COULD CAUSE DAMAGE TO THE TEST SET AND EQUIPMENT UNDER TEST, AS WELL AS CREATE AN UNSAFE CONDITION FOR PERSONS OPERATING THE SET.

INTRODUCTION

A primary injection test set such as the PI-2500 and PI-5000 is a device with high current, low voltage AC outputs for testing direct acting low voltage circuit breakers. Current is injected through the main contacts of the breaker to simulate actual fault conditions, which tests the operation of CTs, solid state, thermal, or electromechanical trip devices, and the actual trip mechanisms and breaker contacts.

GENERAL DESCRIPTION - PI2500

The PI-2500 is a versatile and technologically advanced primary injection test set capable of testing circuit breakers up to 2000 amperes frame size. It incorporates an improved low impedance output transformer with dual primaries to facilitate its use on power sources of 480 VAC as well as 240 and 208 VAC, and dual secondaries to provide optimal impedance matching to a wide range of breaker sizes. High capacity internal fan cooling allows maximum utilization of the output transformer and faster recovery after overload conditions.

It is housed in a rugged aluminum frame enclosure with removable sides and top for easy access to internal components. The sides are clear of protruding components, and a full-width handle facilitates moving the unit. Locking pneumatic swivel castors on one end provide ease of mobility and allow the test set to be moved on rough surfaces.

The indicator control panel and MAC-20 are mounted in a compact hood on the top, which provides protection during transportation. A flat area on the top surface can be used for convenient placement of manuals, breaker curve books, and auxiliary instruments. The auxiliary 120 VAC GFI protected outlet is conveniently located on the rear of the unit and protected by a 4-ampere circuit breaker.

The output stab connectors are slotted to accommodate special breaker stab adaptor plates as well as being able to connect to the AUX-5000 for increased output capacity. The rugged silver-plated copper stab adaptors supplied with the test set are designed to be used for both vertical and horizontal stabs and have both $\frac{1}{2}$ " and $\frac{3}{4}$ " output plates. Standard $\frac{1}{2}$ "-13 stainless steel hex head bolts with matching nuts and washers are used to connect the output stab plates, and they may be replaced easily.

A series adaptor bar allows the output to be configured for continuous current of 1000 amps at 15 VAC for testing breakers that require connection via cables. A configuration switch on the output faceplate adjusts the internal CT output for proper readings in either configuration. The test set may be plugged into any 60 Hz AC voltage source of 200-250 VAC or 400-500 VAC, and will work on 50 Hz sources of 200-210 VAC or 400-420 VAC. The line voltage is displayed on the indicator control panel digital meter. An input selector switch can be set for 208, 240, or 480 VAC inputs. An internal voltage sensor automatically ensures that the switch is set correctly before AC control power can be turned on, and monitors input voltage for compliance to specifications.

The Vernier uses a large wheel to adjust the output manually within the range determined by the coarse tap, as well as a motorized control actuated by means of a smart control switch. When the switch is pressed briefly, the Vernier moves in a very small increment for fine control. When the switch is held, the Vernier moves very quickly, so that the entire span may be traversed in less than five seconds. The approximate Vernier position is displayed on an LED indicator bar graph. For the PI-2500, the Vernier is always turned clockwise to increase output.

The electronically controlled tap selection uses power contactors to set the coarse tap. The unit powers up in the lowest tap position (1), and the setting may be adjusted by means of a rocker switch on the indicator/control panel. If the switch is held, the taps change at a rate of about two seconds per tap. Tap change is not allowed when output is on. Note: Output taps 1-3 only for the PI-2500. Output taps 4-9 are only operational when the AUX-5000 section is connected to the PI-2500 section.

The indicator/control panel features two temperature indicators: one for the output bus temperature, and the other for the overall system temperature. This is determined by a combination of actual winding temperature, and a "virtual temperature" which is derived from time and current duty cycle usage as monitored by a "POD", or Programmable Overload Device. Additional details are available in a separate manual. If either temperature exceeds a safe operating level, the interlock is asserted, and the output section is de-energized. Additional thermostatic sensors in the output transformer windings will also assert the interlock if unsafe temperature levels are detected.

The output voltage of the test set is provided on the indicator/control panel for monitoring by means of a separate digital voltmeter.

Primary catastrophic overload protection for the test set is accomplished with input fuses having high interrupting current capacity. Overload of the output system is sensed by means of the previously mentioned "POD" on the Vernier autotransformer, and thermal sensors in the transformer winding. Thermal switches are also installed in the transformer windings. The combination of these devices allows full utilization of the overload capability of the test set and eliminates costly and cumbersome fuse replacement required in other test sets.

Electrical Test Instruments PI-2500 & PI-5000 Section II - Detailed Description

The output of the test set is controlled by means of a proven SCR controller, which drives modular solid-state relays. This provides precise initial phase angle control to reduce DC offset for inductive loads and more consistent pulse currents. Snubbers are incorporated to eliminate false firing and latching problems. The phase angle is internally adjustable and is preset for optimal waveforms with most breakers.

The measurement of output current and time is accomplished by means of the proven MAC-20, which uses highly accurate A/D circuitry and intelligent firmware to resolve true-RMS values of distorted waveforms. It also provides features such as preset ON times for convenient jogging of output current without overheating the breaker or causing unwanted trips.

The entire test set has been designed for reliability, ruggedness, and ease of use. Sophisticated electronics in the indicator/control panel and the MAC-20 provide state of the art accuracy and convenience, while simple connections allow for easy removal and replacement for transportation or service. All covers are removable, allowing easy access to all internal components. An internal relay panel located just under the top panel contains most of the circuitry, facilitating service and maintenance. The rear panel may be removed for access to input fuses, control fuses, and the SCR board. A large bottom-mounted fan provides airflow to the transformer and output bus. The cabinet is designed with no protruding components on the sides, so it can be navigated through narrow doorways without problems. The input jacks and voltage switch are protected by being mounted on a recessed rear panel.

The reduced length and width of the test set allows it to be maneuvered in tight spaces and it can be lowered into a shaft 26" x 30", or a manhole 40" diameter. Provisions have been made on the bottom of the frame for a lifting sling to be attached without slipping from the corners.

GENERAL DESCRIPTION - PI5000

The PI-5000 is composed of the PI2500 as described above, and the AUX-5000 auxiliary output unit, which when combined gives the unit the capability of testing 4000 ampere breakers, with essentially the same specifications as the proven PI-4000B. The auxiliary unit is smaller than the PI2500, so it can also be maneuvered easily in tight spaces or lowered into shafts and manholes that would not be possible with a larger single piece unit.

The AUX-5000 is easily attached to the PI-2500 by means of horizontal bus bars with stainless steel socket head cap bolts and sturdy nutplates. The AUX-5000 is simply rolled into place to mate with the PI-2500, and then the cap screws are tightened. It is recommended to use a stubby fine pitch ratchet wrench or a pneumatic air ratchet, with an Allen wrench hex bit. The main electrical power and ground connections to the AUX-5000 are the same twist-lock connectors as those on the PI-2500. Power cables stored in a compartment in the AUX-5000 are then connected to the PI-2500. The connectors are color-coded and must be connected with black to black and red to red.

There is also a control cable which connects from the AUX-5000 to the PI-2500.

The output of the AUX-5000 is identical to that of the PI-4000B, and accommodates standard breaker stabs, for continuous output of 4000 amperes. It can also be configured in series mode for a continuous output of 2000 amperes. The configuration switch on the PI2500 must be set to 4000 or 2000 for proper output readings.

The combined unit, known as the PI-5000, can only be used on 480 VAC.

MONITOR AND CONTROLLER MAC-20

The MAC-20 microprocessor-based measurement and control unit features digital readout of current and time enhanced by digital signal processing. Pulse (memory) mode provides fast and accurate automatic evaluation of output current pulses as short as one-half cycle.

The MAC-20 incorporates a precision A/D converter and special firmware for true-RMS continuous and pulse current reading with much greater accuracy. It also utilizes a sophisticated current sensing system for more reliable current latch mode operation and better timing accuracy. An LED digital readout for current in four ranges from 1000 A to 100 KA reduces the chance of operator error.

An integral auto ranging timer with LED readout provides four digits in seconds or cycles mode, with a resolution of 0.001 second or 0.5 cycle. A **preset** function allows you to set a maximum ON time in seconds or cycles, for convenient "jogging" of output to desired current or setting time for heat runs and long-time tests.

A **current hold** feature is also built in. When the desired current is displayed, a simple touch of the MAINTAIN key activates the function, which automatically adjusts the motorized Vernier to hold the current within 5 amperes.

The memory current displayed after a test indicates the true RMS value of the entire pulse, no matter how long or short it was, except for instantaneous trip, where the peak RMS value is used. After a test, it is possible to read the **peak RMS value**, which indicates the amount of DC offset or distortion, or the **last displayed average RMS** reading, which is useful for pickup testing.

The entire metering and control package are designed to be removed and replaced very easily, so that it may be transported separately.

A remote-control accessory is available which allows the Vernier to be operated by means of a small hand-held control, which also allows the test set to be initiated. _____

PI-2500 SPECIFICATIONS

INPUT SUPPLY:

208/240 or 480 VAC +/- 10% (Field switchable) SINGLE PHASE 60 HZ (50 Hz at 10% lower line voltages) 15 KVA (Continuous) at 12 KVA output (80% efficiency)

OUTPUT CURRENT & OVERLOAD CAPABILITIES:

7.6V (Par)	15.2 V (Ser)	Ovld	Duty	Max ON Time	Min OFF Time	Max Inp Curr (@480/240)
2000 A	1000 A	٦x	100%	CONTINUOU S	N/A	32/64
2800 A	1400 A	1.4x	50%	15 Minutes	15 Minutes	45/90
4000 A	2000 A	2x	25%	5 Minutes	15 Minutes	64/128
6000 A	3000 A	Зx	10%	1.5 Minutes	15 Minutes	96 / 192
8000 A	4000 A	4x	6%	45 Seconds	15 Minutes	128 / 256
10000 A	5000 A	5x	4%	4 Seconds	2 Minutes	160 / 320
14000 A*	7000 A*	7x	2%	1 Second	2 Minutes	224 / (448 *)
20000 A*	10000 A*	10x	1%	0.2 Second	2 Minutes	320 / (640 *)

*Available with 480 VAC input only; Max ON Times may be less at 208 or 240 VAC

DIMENSIONS AND NET WEIGHT

Height:	41 in. (1041 mm) (includes castors and hood)
Width:	29.0in. (737 mm)
Depth:	25.0 in. (635 mm)
Weight:	515 lb. (192 kg)

STANDARD ACCESSORIES

Stabs, BS-50HV (½" bus, horizontal or vertical) Stabs, BS-75HV (¾" bus, horizontal or vertical) Stab adaptor assembly		1 set 1 set 1 pair
Series bars	3 pcs	
Input power plugs	3 pcs	
Contacts leads		1 pair
Technical manual	1 сору	

OPTIONAL ACCESSORIES

Remote initiate cable Serial Interface Cable

PI-5000 SPECIFICATIONS

INPUT SUPPLY:

480 VAC +/- 10% SINGLE PHASE 60 HZ (50 Hz at 10% lower line voltages) 45 KVA (Continuous) at 36 KVA output (80% efficiency)

OUTPUT CURRENT & OVERLOAD CAPABILITIES:

7.6V (Par)	15.2 V (Ser)	Ovld	Duty	Max ON Time *	Min OFF Time	Max Inp Curr (@480
4000 A	2000 A	٦x	100%	CONTINUOUS	N/A	96
5600 A	2800 A	1.4x	50%	15 Minutes	15 Minutes	134
8000 A	4000 A	2x	25%	5 Minutes	15 Minutes	192
12000 A	6000 A	Зx	10%	1.5 Minutes	15 Minutes	288
16000 A	8000 A	4x	6%	45 Seconds	15 Minutes	384
20000 A	10000 A	5x	4%	4 Seconds	2 Minutes	480
28000 A	14000 A	7x	2%	1 Second	2 Minutes	672
40000 A	20000 A	10x	1%	0.2 Second	2 Minutes	960

DIMENSIONS AND NET WEIGHT PI-5000 AUX

Height:	35 in. (889 mm) (includes castors)
Width:	30.0 in. (762 mm)
Depth:	25.0 in. (635 mm)
Weight:	585 lb. (218kg)

DIMENSIONS AND NET WEIGHT PI-5000 (Combined PI-2500 & PI-5000AUX)

Height:	41 in. (1041 mm) (includes castors and hood)
Width:	48.0 in. (1219 mm)
Depth:	25.0 in. (610 mm)
Weight:	1100 lb. (411kg)

STANDARD ACCESSORIES

Stabs, BS-50HV (½" bus, horizontal or vertical)	l set
Stabs, BS-75HV (¾" bus, horizontal or vertical)	lset
Input power plugs	1 pair
Contacts leads	1 pair
Technical manual	1 сору
Remote initiate cable	1each

OPTIONAL ACCESSORIES

Series bar Serial Interface Cable

=====

======

SECTION II

DETAILED DESCRIPTION

=======

=======

SECTION II

DETAILED DESCRIPTION

THEORY OF OPERATION

High Current Test Sets

High current test sets generally consist of the following:

1. One or more coarse taps accomplished by:

(a) A tapped autotransformer providing several equal steps of voltage or

- (b) A multi-section output transformer
- 2. A continuously variable Vernier adjustment between coarse taps by means of:
 - (a) A variable autotransformer and boost transformer, or
 - (b) A variable autotransformer connected to a section of the output transformer.
- 3. An output transformer with one or more isolated low voltage, high current secondary.
- 4. Power control circuitry consisting of switches, relays, protective devices, etc.
- 5. Current measurement circuitry consisting of sensors, current meter, and timer.

In general, a primary voltage is selected by means of a combination of coarse tap and Vernier adjustment. This voltage is stepped down by the output transformer to provide the desired current into the load impedance.

PI-2500 Main Unit Circuitry

Main power is applied to the PI-2500 by means of standard high current plug and socket connectors, which are supplied for the customer to connect to the power source with appropriate flexible leads. A ground connector is also provided for a solid ground connection.

Primary protection is provided by high capacity 100 ampere input fuses (F1 and F2). After that, the control section is protected by smaller 5 ampere fuses (F3 and F4), and the power section is isolated by means of high current contactors (K1 and K2).

Transformer T6, protected by fuse F6, steps down the primary voltage by a factor of $\frac{1}{2}$, and is connected to a wide range switching power supply in the indicator

control panel to provide 12 VDC. The dual primary of transformer T6 steps it down by a factor of 1/2, and T10 steps it down by another factor of ½, and this voltage is sensed by a voltage relay circuit and read on the control panel LED meter. When the primary voltage is between about 200 and 270 VAC, this circuit allows operation in 208 or 240 VAC mode. If the voltage is between about 420 and 520 VAC, operation is allowed in 480 VAC mode. Control power cannot be turned on if the voltage is outside these bounds.

When AC power is supplied to the test set, the 24 VDC power supply PSI is powered through the stepped down primary winding of T6, and will operate from supply voltages of 500 to 190 VAC. This DC control voltage is used for all of the tap contactors. There is a current limiting circuit which is required to keep the output of the power supply from shutting down while charging the large capacitors that are needed to pull in the contactors.

Another transformer, T9, supplies nominal 104, 120 or 240 VAC power to the control panel, which has an internal 12 VDC power supply which powers other portions of the control circuitry of the control PCB.

When the input voltage selector switch SI is the 208 or 240 V position, relay K6 is energized, setting the primary windings of transformer T4 in parallel. This also energizes relay KI on the voltage sensor PCB and provides an interlock and input selector error indication. The voltage sensor PCB rapidly flashes the Input Select Error LED on the control panel for 5 seconds during startup, and then turns off if input voltage is within bounds as determined by the input selector switch position. If line voltage is incorrect, the Input Select Error LED will flash, and control power cannot be turned on. If control power is energized, brief voltage sags or surges will flash the LED as a warning. If such voltage excursions persist for longer than about 0.2 seconds, the control power will drop out.

Binding post BP1 is provided for separate connection to an earth ground, to check for ground integrity. When there is continuity from this point to chassis ground, a relay on the control PCB is energized, and enables the interlock for control power. If ground integrity is not sensed, the Ground Open LED DS1 will light. A separate lead should be connected to the external equipment ground system to verify that the main grounding cable is intact. Do not defeat this safety feature by jumpering the ground binding post to the test set frame.

When the control power switch in the indicator control panel is pressed, and all voltage interlocks are OK, relay K7 is energized, which provides 120 VAC control power to the auxiliary GFI outlet, protected by 4 ampere circuit breaker CB1. A relay on the control PCB provides 120 VAC control power to the entire test set, including the fans and the main contactors. In 208 V input mode, the control voltage is boosted by transformer T7.

If all power interlocks are OK, the Main Power switch in the indicator control panel may be pressed to activate main contactors K13-14. This provides high

current power to the test set output circuitry through the SCR controller. The switched output voltage is supplied to distribution blocks DB1 and DB2.

The Vernier autotransformer TI and output transformer T2 are connected to input voltage selector switch SII. This allows for connection in series for 480 VAC, and parallel for 208/240 VAC. Vernier TI is connected directly to the first primary of T2, so that clockwise rotation produces an output voltage of about 0-1.5 VAC. Relays K3, K4, and K5 connect the second primary windings for fixed outputs of 0, 1.25, or 2.50 VAC for taps 1, 2 and 3. This provides three (3) overlapping output ranges up to 3.75. 7.5 or 15 VAC, depending on how the four secondary windings are connected.

Output current is detected by means of an air core CT around all four main busses. The configuration switch can be set to 1000, 2000, or 4000, which divides the signal by a factor of 4, 2, or 1. Calibration of all three modes is accomplished with potentiometers on the switch assembly under the output face plate.

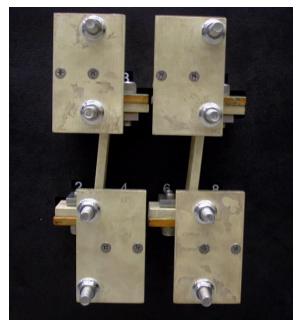
The output section is energized when a signal is applied to the trigger board of the SCR controller. The initial phase angle is determined by a zero-crossing detector in the trigger PCB, and a delay which is normally preset to 70 degrees. There are three solid state relays, one of which powers the Vernier assembly, and the others power the second primary on the output transformer.

The Vernier autotransformer may be adjusted manually by means of a handwheel, or by activating the motor drive. Increasing output is clockwise for all taps.

When the SCR board is energized, 12 VDC is applied to the control panel which is used for output ON detection and indication.

Thermistor TH2 senses the temperature of the output bus, and TH1 reads the temperature of the first primary of output transformer TI. These normally have a resistance of 10 K ohms at room temperature, and lower values as the temperature increases.

Relays K3 through K5 are energized through the indicator control panel and the control PCB. They may be equipped with electrical interlocks to avoid damage if all three are simultaneously energized. The relays actually have 24 VAC coils which are driven with a pulse of 24 VDC long enough to cause them to seal in, and then are held by a lower current through power resistors on the control PCB. This type of contactor is not available with a DC coil, and DC was chosen to avoid relay chatter that can occur with AC relays if line voltage momentarily drops.


The adjustable Vernier assembly T2 in the PI-2500 consists of a stack of four 120 VAC decks, with each series connected pair connected to a 240 VAC primary on TIA. Minor voltage imbalance up to about 2 VAC is corrected by means of paralleling transformer T3, and actual current in each primary circuit is monitored by means of 50:5 current transformers T4 and T5. Resistors R1 through R4 ensure

voltage balance on the series connected pairs, and also provide a resistive load to stabilize the SCR controller at low output settings.

The secondary currents from T4 and T5 are monitored by the Programmable Overload Device (POD), which also measures actual temperature in the primary winding of TIA. The overall system status is displayed on the bar graph of the indicator control panel, and an interlock relay shuts down the output of the test set if abnormal conditions are detected. More details are in a separate manual.

The PI-2500 features a very efficient low impedance output transformer with enhanced reliability and cooler operation due to single piece secondary bus conductors. It was designed so that it could provide three connection modes for 1000, 2000, and 4000 amps continuous current. Stab Adaptor Plates and series bars are used for convenient output connection. The output bus connectors are slotted so that the hardware can be loosened and removed or replaced easily. A slotted brace is supplied that helps with alignment. See the following illustration for details:

Illustration of PI-2500 Stab Plate Assembly:

AUX5000 Main Unit Circuitry

The AUX-5000 auxiliary unit connects to a 480 VAC supply and ground by means of standard input jacks. Primary protection is provided by 200-amp fuses F1 and F2. Main power is supplied to the output section by power contactors K1 and K2, which are energized when those in the PI2500 are turned on. There are three solid state relays, which control power to the three sections of the output transformer T1. They may be protected by fuses, and they are equipped with snubbers to prevent spurious turn-on and latching of output.

Contactors K3 through K8 are operated for taps 4 through 9, and their coils are driven by 24 VDC pulses from the Auxiliary Relay PCB. The primary of each transformer section is shorted when it is not needed; otherwise it is powered through the SSR. Electrical interlocks on the contactors assure that both cannot be pulled in at the same time.

The control connector to the PI2500 provide ACHI and ACLO power for the fan, control signals for the contactors, initiate signal for the solid-state relays, interlocks, and sense leads for the output bus voltage from terminal 1 to 4.

The secondary windings of the transformer, consisting of two pairs of bus bars, are bolted to the secondary bus bars of the mating PI-2500. The combined units form a transformer which is nearly identical to the PI4000B.

The high strength and corrosion resistant stainless-steel output bolts should rarely require replacement but may be serviced by simply removing the sixteen screws on the phenolic output faceplate, and then removing one of four bolt retainers. The standard hex head bolts may then be pushed through and replaced.

PI-2500 Indicator Control Panel Circuitry

The power for the control panel is provided by the INV/2 circuit, which is the main input voltage divided by 2. This voltage, ranging from 104 VAC to 240 VAC, powers a wide range switching power supply, which supplies 12 VDC to the rest of the circuitry. When the CTL ON switch S1 is pressed, DS1 lights and relay K4 is energized, and latches on if voltage interlocks are OK and the external control relay energizes. K4 also provides 12 VDC power to the PC board, which has circuitry for Vernier position display and adjustment, tap selection and display, and temperature readings. Pressing S2 turns control power off.

If any external interlock is open, as sensed by K1, indicator DS4 will light. Otherwise, K2 will energize, which energizes K2 and allow operation of S3. When MAIN ON switch S3 is pressed, relay K3 energizes, MAIN READY lamp DS3 lights, and power is provided to external main contactor. If it operates, K3 is latched on through its auxiliary contact.

If the output of the test set is ON, 12 VDC will be applied to DS5, and also will be sensed by the PC board, which will inhibit tap change.

The INV/4A and B signals provide a voltage equal to ¼ the input voltage. This is rectified and filtered by the metering PC board and displayed on the panel meter.

Output is inhibited during tap change or when an interlock condition exists. An interlock (INTLKB) will be asserted if either temperature readouts exceed an adjusted setpoint.

The Vernier position signal is supplied to the PC board and displayed as a 0-100% reading on a ten segment LED bar graph. The signal is about 1.0 to 4.0 VDC.

The bus temperature is from a 10 K ohm thermistor. System temperature is a variable voltage from the POD, as discussed elsewhere. Circuitry in the PC board converts these signals to voltages which are displayed on multicolor bar graphs. When the signal exceeds that which lights one red bar, the interlock is tripped.

The output voltage of the test set is supplied at jacks J1 and J2.

Indicator Control Panel

Input Voltage Meter: This LED panel meter indicates the approximate input voltage applied to the test set.

Control Power ON switch: This green switch turns on 120 VAC control power to the test set, and its green lamp lights when ON.

Control Power OFF switch: This red switch turns off the 120 VAC control power

to the test set.

Main Power READY switch: This green switch turns on the main power to the output section of the test set, and its green lamp lights when ON.

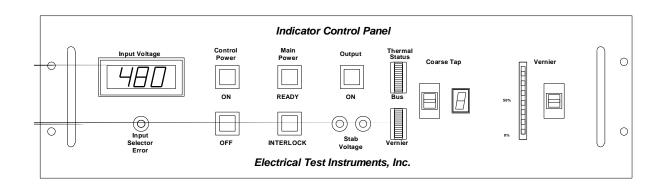
Main Power INTERLOCK switch: This red switch turns off the main power to the test set. It lights if an interlock condition is detected.

Output ON indicator: This yellow lamp lights when output voltage is ON.

Output Voltage jacks: These banana jacks are connected to output stabs 1 and 8 in the PI2500, and stabs 1 and 4 in the AUX-5000 and may be used to monitor voltage on the breaker with a DMM.

Thermal Status - Bus: This multicolor bar graph indicates approximate temperature of the output bus. Green bars indicate normal temperature. Yellow bars indicate significant heating, and heavy testing should be postponed until unit cools. Red bars indicate overheating, and unit must cool to yellow range before testing. Output initiation will be inhibited if second red bar lights. Excessive temperature may indicate poor output connections.

Thermal Status - System: This indicates temperature of the output section, and other conditions, as determined by the POD. A thermistor in the winding of the first section of the output transformer provides actual temperature, but the POD also calculates a "virtual" temperature based on overload duty cycle limits as indicated in the specifications. The ten bar graph LEDs correspond to temperatures of approximately 80 to 280 degrees F, with about 20 degrees per bar. Testing is allowed up to a reading of two red bars but will then be inhibited until temperature cools to no more than four yellow bars.


Coarse Tap Switch: This rocker switch selects the coarse tap. The unit powers up in tap 1. Pressing the switch briefly UP or DOWN will raise or lower the tap by one. Holding it will change taps about one per second.

Coarse Tap Indicator: This seven-segment red LED indicates tap position from 1 to 9.

Vernier Indicator Bar graph: This ten-segment red LED indicates approximate Vernier position. 0 or 1 segment lit indicates minimum position, and 9 or 10 segments lit indicates maximum position.

Vernier Adjust Switch: This rocker switch adjusts the Vernier position. Pressing it briefly UP or DOWN causes the Vernier to move by a very small increment, for fine control. Holding it for about a second will cause the Vernier to move very quickly, for rapid rough adjustment. _____ ____ ____

Figure II-2 – Indicator Control Panel

==

MEMORY AMMETER CONTROLLER MAC-21

INSTRUCTION MANUAL

Firmware Version 3.06 and above

Electrical Test Instruments, LLC

1301 Avondale Road, Suite J New Windsor, MD 21776 www.ETIPrecision.com

> (410) 857-1880 Fax (410) 857-1387

MAC-21 Specifications

INPUT POWER:

120 VAC, SINGLE PHASE 50/60 HZ, 20 VA Max

CURRENT RANGES:

0-1,000 / 5,000 / 25,000 / 100,000 Amperes

CURRENT ACCURACY:

+/- 0.5% Reading + 0.5% Range + 1 Digit (Continuous) +/- 1.0% Reading + 1.0% Range + 1 Digit (Pulse > 0.01 sec)

TIMER RANGES:

0-9.999 / 0-99.99 / 0-999.9 / 0-9999 Seconds 0-999.9 / 0-9999 Cycles

TIMER ACCURACY:

+/- 0.005 sec +/- 0.005% of reading +/- 1 count

DIMENSIONS AND NET WEIGHT

Height:	7.0 in. (178 mm)
Width:	19.0 in. (483 mm)
Depth:	2.0 in. (51 mm)
Weight:	3.7 lb. (1.68 kg)

STANDARD ACCESSORIES

Remote Initiate cable	1	S-B143
Contact Leads	1 pair	S-A108

MAJOR PARTS IDENTIFICATION AND OPERATION

MAC-21 Control Panel

TIME DISPLAY: This 4-digit LED display normally indicates the elapsed time of a current pulse. In SECONDS mode, it displays time up to 9.999 seconds, then auto ranges to 99.99 seconds, 999.9 seconds, and 9999 seconds. In CYCLES mode, it reads time (based on 60 Hz), up to 999.9 cycles, then auto ranges to 9999 cycles. If time exceeds maximum display capacity (10,000 seconds or 10,000 cycles), the display will read "OVER". In PRESET mode, the display indicates the maximum time of initiation (ON time), in either cycles or seconds. A reading of zero disables the PRESET function and allows any time.

CURRENT DISPLAY: This 4-digit LED display indicates the output current. In CONTINUOUS mode, as well as in MEMORY mode before and during a test, the display indicates true-RMS output current in real time. After completion of a test, in MEMORY mode, the display shows the true-RMS value as computed over the entire length of the pulse. This mode is indicated by a flashing LED on the MEMORY key. If a reading exceeds the maximum value for the selected range, the display will read "OVER".

This display is also used When the time base is in SECONDS mode, press the STOP key to display the last average RMS value displayed in CONTINUOUS mode. This is useful for pickup tests. It may not be accurate for times less than 1 second.

INITIATE key: This key is used to turn ON the output of the test set. The LED in the key indicates that the MAC-21 is attempting to turn the output ON, but other conditions (such as interlocks) could keep the output from actually turning on. In MOMENTARY mode, the key must be held to keep output current on. In MAINTAIN mode, once current is detected, the output will stay on until the breaker trips, or the STOP or RESET button are pressed. The MAC-21 must be RESET in order to initiate output, and in N.C. or N.O. contact modes, the contact status (continuity) must indicate that the breaker is closed. If the output on time exceeded the PRESET time, as indicated by flashing of the PRESET key LED, the INITIATE key will automatically reset the MAC-21 and turn the output on.

STOP key: This key is used to turn the output of the test set OFF. Its LED indicates that output is not being turned on by the MAC-21, but other conditions could cause output voltage to be ON. Use of this key is usually necessary only when in MAINTAIN mode, and it is necessary to abort the test before the breaker trips. **NOTE:** It is important to realize that the interlock system of the circuit breaker test set may also turn the output off, but it will turn back ON when the interlock condition is cleared (in N.O. and N.C. modes only).

RESET key: This key reset the displays on the MAC-21, and arms the pulse reading system. The LED on the key indicates that the system is reset and armed. RESET alsoCopyright(C) 1994-2004Electrical Test Instruments, LLCAll Rights ReservedPage III-2

takes the unit out of PRESET ADJUST mode.

MAINTAIN key: This key toggle the MAINTAIN mode for initiation; its LED indicates that this mode is enabled. When in MAINTAIN mode, the INITIATE key need only be pressed briefly to turn output on. MAINTAIN must be set in order to read pulse current when output is initiated by means other than the MAC-21.

For test sets with motorized Vernier, the MAINTAIN key may be pressed while output is ON to provide automatic current hold. The LED in the MAINTAIN key will blink while this mode is set, and the Vernier motor will be activated whenever the current varies more than 5 amperes from the value displayed when the key was pressed. The key may be pressed again to return to normal mode. STOP or RESET will also discontinue current hold.

N.O. key: This key is used to set the Normally Open contacts mode. In this mode, lack of continuity on the CONTACTS binding posts indicates that the protective device under test is in its normal (non-tripped) mode, and ready to accept current. In N.O. mode, after the INITIATE key is pressed, the timer starts when current (about 3% of range) is detected. The timer stops when the STOP key is pressed, or continuity is sensed at the CONTACTS binding posts. Timing accuracy in this mode is typically +/-0.01 seconds.

N.C. key: This key is used to set the Normally Closed contacts mode. In this mode, continuity on the CONTACTS binding posts indicates that the protective device under test is in its normal (non-tripped) mode, and ready to accept current. This mode may be used for testing multi-pole breakers by connecting the CONTACTS binding posts to an unused pole. In N.C. mode, the timer starts as soon as current (about 3% of range) is detected after the INITIATE key is pressed and stops when the STOP key is pressed or a break in continuity is sensed at the CONTACTS binding posts. Timing accuracy in this mode is typically +/- 0.01 seconds.

C.L. key combination: When the N.O. and N.C. keys are pressed simultaneously, both LEDs light, indicating C.L. mode (Current Latch). This is the normal power-up default mode for the test set, and is recommended for all tests, unless there is a good reason for using contacts to sense trip. In this mode, current is continuously sampled, and when it exceeds approximately 10% of the current range value, the timer starts, and calculation of pulse current begins. When current stops (or drops below a dynamically determined threshold value), the timer stops running, and the final value for pulse current is calculated and displayed. If the output was initiated by the MAC-21, it is turned OFF. NOTE: in C.L. mode only, the contacts jacks may be used for remote initiation (see below).

PRESET key: This key toggle the PRESET ADJUST mode, indicated by illumination of its LED. When PRESET ADJUST is active, the adjacent SECONDS and CYCLES keys respectively lower and raise the preset time in seconds or cycles, depending on the time base that was selected. Both keys may be pressed simultaneously to reset the time limit to zero, which disables the time limit function. When not in PRESET mode, the LED will flash if the displayed time exceeds the preset limit.

SECONDS key: This key normally selects the SECONDS time base. If the PRESET mode is selected, this key is used to LOWER the preset time limit by decrements of 1.000 second (5.000 seconds above 10.00) with the SECONDS time base, or 1.0 cycles with the CYCLES time base. If it is held, the reading will decrease at a rate of about 5 intervals per second. If a preset time limit was set in SECONDS mode, the output will be turned off within 200 milliseconds of the limit. SECONDS or CYCLES time base may be selected at any time before, during, or after a test.

CYCLES key: This key normally selects the CYCLES time base. If the PRESET mode is selected, this key is used to RAISE the preset time limit by increments of 1.000 seconds (5.000 seconds above 10.00) with the SECONDS time base, or 1.0 cycles with the CYCLES time base. If it is held, the reading will increase at a rate of about 5 intervals per second. If a preset time limit was set in CYCLES mode, the output will be turned off within several milliseconds after the limit has been reached. SECONDS or CYCLES time base may be selected at any time before, during, or after a test.

MEMORY key: This key toggle the MEMORY mode, indicated by illumination of its LED. When in CONTINUOUS mode (LED off), the current display always reads the realtime continuous output current of the test set. In MEMORY mode (LED on), the current display will read the continuous output current until the test is complete. At this time, the LED will flash, and the display will read the computed true-RMS value of the entire current pulse for the duration indicated on the TIME display. This key may be pressed at any time before, during, or after the test, to toggle between the two modes.

As described above, pressing the STOP key provides access to display of peak RMS and last average RMS current.

1000 A range key: This key selects the 1000 ampere range, which provides best accuracy of readings up to about 1000 amperes. Nominal currents close to this limit, when applied to the device under test, will sometimes cause higher peak currents, causing the display to read "OVER", indicating an overrange condition. If this happens, select the next higher range. Pressing any range switch will also RESET the MAC-21.

5 KA range key: This key selects the 5.000 KA range, for output currents up to about 5,000 amperes. See above for information common to all ranges.

25 KA range key: This key selects the 25.00 KA range, for output currents up to about 25,000 amperes. See above for information common to all ranges.

100 KA range key: This key selects the 100.0 KA range, for output currents up to about 100,000 amperes. See above for information common to all ranges.

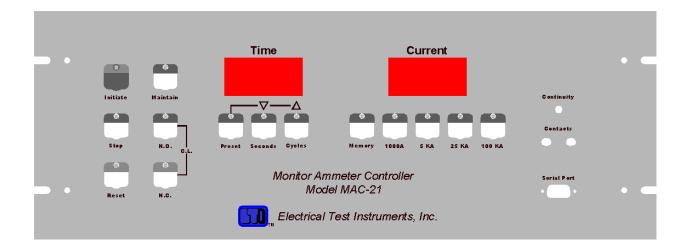
CONTINUITY lamp: This LED lights when continuity is detected at the CONTACTS binding posts in N.O. and N.C. modes. The beeper will also sound whenever contacts change state.

CONTACTS/REMOTE jacks: These jacks provide a low-power AC signal which detects continuity in N.O. and N.C. modes, or is used with a pushbutton cord switch for

Copyright(C) 1994-2004

remote initiate function (see below). A resistance of about 200 ohms or less will be interpreted as continuity. Although the signal is low power and transformer isolated, it is good practice to avoid touching any conductive surface connected to these terminals. CAUTION: NEVER CONNECT THESE TERMINALS TO ANY LIVE CIRCUIT!

REMOTE INITIATE: In C.L. mode only, the CONTACTS jacks provide a remote initiate function. For safety reasons, this function is disabled in MAINTAIN mode, unless a preset value is set in CYCLES time base.


SERIAL port: This standard serial port may be connected to a printer, computer, or other device to print or store time and current values of test results in ASCII format. It is set for 9600 baud, 8 bits, 1 stop bit, no parity, no flow control. This information is sent at the end of each test, or by pressing the Stop and Reset keys.

Report Generator Software Option: we also offer a software package for a Windows based computer that takes the data from the serial port and inserts time and current values into an excel document. Must have Microsoft office installed for this software to function properly. This can be custom tailored to Your excel document or use the generic document that is provided with the software

MAC-21 Internal Parts

INPUT CONNECTOR: This connector, located on the upper rear corner of the MAC-21, provides 120 VAC control power, and connects to the air core CT (current sensor), and initiate circuitry of the test set. The wiring of this connector is essentially compatible with that of the EIL Accu-Amp and is designed to facilitate removal of the MAC-21 for service or shipment. Additional pins are used to provide isolated logic level control for motorized Vernier raise and lower for the current hold feature.

Figure II-2: MAC-21 Front Panel

Electrical Test Instruments, LLC Page III-6

SERVICE INFORMATION AND DOCUMENTATION

MAINTENANCE AND CALIBRATION OF THE MAC-21

The MAC-21 is manufactured using solid state components that should not require extensive maintenance. However, the accuracy of the MAC-21 is critical to the testing of circuit breakers and is dependent upon the output of an air-core current sensing coil, which could change due to movement caused by shock or vibration encountered in transporting the test set. Other factors which may affect calibration are contact resistance in the control cable, unusual magnetic fields, insulation leakage, and aging of electronic components in the MAC-21. Therefore, proper operation and calibration should be checked at regular intervals and adjusted if proper equipment is available.

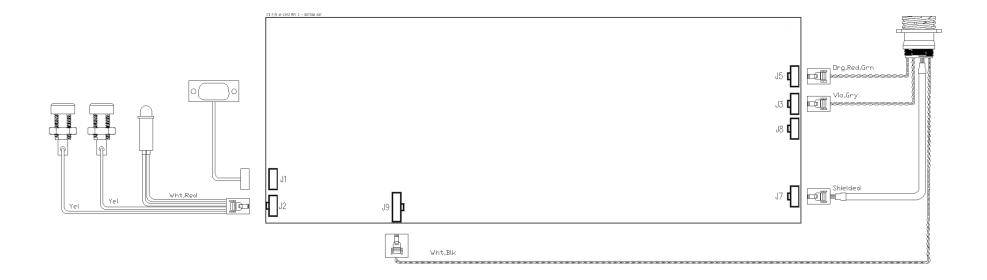
The inherently delicate nature of electronic circuitry and metering make it generally inadvisable to leave the MAC-21 fastened into the breaker test set while it is being transported, and subject to shock and vibration. The standard rack-mount hardware and twist-lock connector make it simple to remove the MAC-21 and carry it separately.

Field calibration of the MAC-21 may be performed as follows:

- 1. Obtain a current measuring calibration standard capable of reading TRUE-RMS current up to at least 1000 Amperes to an accuracy of at least 0.25%. This may consist of a shunt or current transformer, in conjunction with a digital multimeter or laboratory grade AC ammeter.
- 2. Set up the breaker test set for normal breaker testing. If adjustments are anticipated, remove the MAC-21 from the test set.
- 3. Connect the calibration standard to the desired output tap. If cables are used, it is recommended that they be twisted so as to minimize radiation and pickup of stray magnetic fields.
- 4. Apply power to test set and allow at least one minute for circuits to stabilize.
- 5. Check ammeter zero in all ranges. If reading on current meter is greater than 1% of range, internal zero adjustment may be required.
- 6. Set MAC-21 Range to 1000 A and adjust output of breaker test set to exactly 800 Amperes. If Coarse Tap is 1, and Output Control Vernier is less than 50%, additional resistance must be added to output circuit. This is

important, because waveform distortion is more prevalent at lower levels.

- 7. If the MAC-21 reading differs from the standard by more than rated accuracy, adjust the gain potentiometer on the analog board for proper reading. If an error of more than 5% is noted, and unit has been in service, the accuracy and validity of previous tests may be questionable; otherwise, there may be a problem in the test setup.
- 8. Check calibration at 200, 400, 600, and 1000 Amperes.
- 9. Adjust the current to zero, and press RESET key.
- 10. Raise the current slowly, until the timer begins to run. This is the Current Latch Threshold, which should be about 10% of range.
- 11. Set the current at 50% of full scale (500 A) and stop the current.
- 12. Set the MAC-21 to MEMORY mode and press the RESET Switch.
- 13. Initiate a fast-momentary pulse of no more than 6 cycles (0.1 Sec) duration. The meter should read the same value, within 1% of reading + 1% of range, that was set in step 11 above.
- 14. Check pulse reading operation in this manner for currents of 200, 400, 600, and 1000 Amperes, and varying duration.
- Set Timer Time base to SECONDS. Press Master Reset Switch. Set N.O. mode. Using a stopwatch, initiate for exactly ninety (90) seconds. Timer should read 90.00 Seconds, +/- 0.01 Seconds. (Note: actual reading may vary because of inability to control and measure pulse length.)
- 16. If everything checks out, the MAC-21 can be assumed to be in calibration, and no other adjustments are required.


PARTS LIST (MAC-21):

The overall schematic is on the following pages. The parts list is provided below. Please refer to both when ordering replacement parts.

ITEM	QTY	DESCRIPTION	Part Number
1	1	MAC-21 Contact/LED Harness	S-B369
2	1	MAC-21 Rear Panel Harness	S-B368
3	1	MAC-21 Metal Cage	M-D464
4	1	MAC-21 Main PCB	M-C492
5	1	MAC-21 Membrane Switch Panel	M-D462
6	6	LOCKWASHER, INT TOOTH #4	M-A116
7	6	SCREW, PH, 4-40x1/4	M-A118
8	2	HANDLES, BRASS, NICKEL PLT, 4"	M-C103
9	4	SCREW, RH, 10-32x1/2	M-A158
10	4	FLATWASHER, #10	M-A159
11	4	LOCKWASHER #10	M-A160
12	4	SCREW, PH, 10-32X3/4	M-A191
13	4	NYLON WASHERS #10	M-A155
14	2	JACKSCREW, .312, W/HARDWARE	M-A125
15	4	SCREW, PH, 6-32x1/4	M-A139
16]	COMMUNICATION CABLE	S-A106

_____ Copyright(C) 1994-2004

Connections (MAC-21):

SECTION IV

OPERATING INSTRUCTIONS

SECTION IV

OPERATING INSTRUCTIONS

PRE-TEST INSTALLATION AND SET-UP (PI2500)

- 1. The following components of the test set should be available and in good condition:
 - a) PI-2500 Main Unit
 - b) Series bars (three pieces)
 - c) Stab adapter plate assemblies (one set of four)
 - d) Allen wrench (hex) to match socket head bolts
 - e) Pneumatic or electric power ratchet
 - f) Stab set or cables to match breaker to be tested
 - g) Input power plugs and cables
 - h) Input ground lead
 - i) Auxiliary ground lead
 - j) Contact lead set (If applicable)
 - k) Remote initiate cable (optional)
- 2. For 1000-amp output mode
 - a) Attach series bars from output terminals 2 to 3, 4 to 5, and 6 to 7.
 - b) Make sure they fit snugly between the output bus bars, and tighten the bolts
 - c) Attach cables as needed between output terminals 1 and 8.
 - d) Make sure selector switch is set to 1000
- 3. For 2000-amp output mode
 - a) Attach series bars from output terminals 2 to 3, and 6 to 7.
 - b) Make sure they fit snugly between the output bus bars, and tighten the bolts
 - c) Place the stab plate adaptor assembly stamped #1 on output bus #1, making sure it aligns into the slot on the stab adaptor support block
 - d) Tighten bolts securely.
 - e) Repeat for stab plate adaptor assemblies stamped #4, #5, and #8

- f) When all parts are properly assembled, the bolt pattern should match standard stabs
- g) Make sure selector switch is set to 2000
- 4. Alternate 1000-amp output mode
 - a) Connect series bars and stab adaptor assemblies per instructions for 2000-amp mode above.
 - b) Connect a cable or bus bar between stab plates stamped #4 and #5.
 - c) Connect cables for breaker testing to stab plates stamped #1 and #8

PRE-TEST INSTALLATION AND SET-UP (PI5000)

- 1. The following components of the test set should be available and in good condition:
 - a) PI-2500 Main Unit
 - b) AUX-5000 Auxiliary Unit
 - c) Allen wrench (hex) to match socket head bolts
 - d) Pneumatic or electric power ratchet
 - e) Stab set or cables to match breaker to be tested
 - f) Series bar (optional)
 - g) Input power plugs and cables
 - h) Input ground lead
 - i) Auxiliary ground lead
 - j) Contact lead set (If applicable)
 - k) Remote initiate cable (optional)
- 2. Remove any bus work or cables from the output bus terminals of the PI2500
- 3. Make sure surfaces (especially on top) are clean and smooth.
- 4. Loosen bolts and nut plates on AUX-5000 so that about $\frac{1}{2}$ gap is between bus input connections and nut plates.
- 5. Make sure underside of AUX5000 input bus connections are clean and smooth.
- 6. Position the PI2500 in optimal place for testing, and lock casters.
- 7. Align the AUX5000 in-line with the PI-2500, and carefully roll it directly toward the output bus connectors.

- 8. When the bus connectors are nearly touching, verify that the bus bars of the AUX5000 fit just over the bus bars of the PI2500. It may be necessary to adjust the two units slightly while pushing together. You may apply a little weight to the PI-2500 to achieve correct alignment. Do not ram the units together, as this may damage the bus connections.
- 9. When the two sections are as close together as possible (without hitting the stab, adaptor supports on the PI2500), tighten all the bolts. Be sure to turn each one a little at a time until they are snug, before torqueing them tight, to avoid jamming and galling the threads.

GENERAL TEST PROCEDURES (for both PI2500 and PI5000)

- 1. Additional requirements for testing are as follows:
 - a) Breakers to be tested
 - b) Manufacturers' curve data
 - c) Test log and/or report forms (See examples at end of section)
 - d) Basic hand tools (wrench, screwdriver, etc.)
 - e) Safety equipment (safety glasses, gloves, etc.)
 - f) Reliable and sufficient power source
 - g) Clean, spacious, and well-lit work area.
- 2. The voltage selector must be set to match input voltage.
- 3. Calculate KVA requirements for the source per manufacturer's manual.
- 4. Locate a suitable earth ground and connect it to the Unit with at least #6 AWG wire.
- 5. Connect the Ground Integrity binding post separately to earth ground.
- 6. If possible, TURN OFF power at source.
- 7. Connect power source to input, using connectors supplied.
- 8. Turn on power at source, if turned off in step 6 above.
- 9. Input Voltage meter should indicate actual line voltage. Verify that voltage selector is set for this voltage. Input selector error LED should light if incorrect.
- 10. Verify that Ground Open LED is not lit. Control power cannot be turned on if ground integrity is not sensed.
- 11. Press Control Power switch. Green lamp should light, control panel should power up to tap 1, and MAC-20 should power up. Fans should run.
- 12. If Interlock lamp is not lit, press Main Power Ready switch. Main

contactor(s) should energize, and green lamp should light.

- 13. Connect breaker under test to appropriate output tap, using stabs or cables and series bar as required.
- 14. Make sure that breaker is CLOSED.
- 15. Follow Step-by-Step procedures below, as required, for testing.
- 16. When tests are completed, press INTERLOCK switch to turn Main Power OFF.
- 17. Press Control Power Off switch to turn Control Power OFF.
- 18. Turn off supply power, if possible, and disconnect input power cables.
- 19. Remove ground cables from Main Control Unit to earth ground.

BASIC GUIDELINES AND SUGGESTIONS

- 1. Best timing and current accuracy will be obtained with the MAC-20 in current latch (C.L.) mode.
- 2. Current Latch modes are preferred for most testing purposes. Exceptions are:
 - a) Non-series-connected devices such as motor overload relays or shunttrip breakers.
 - b) Ratioing of current transformers.
 - c) Heat runs of cables, bus work, etc. (Connect contacts to thermostat).
- 3. If Contacts Mode is selected, use caution when connecting continuity sensing cables. Although the voltage and current are minimal, under some conditions it could cause electrical shock. ALWAYS connect one clip at a time, and NEVER rest the other hand on any current-carrying parts of the breaker while the test set is powered up.
- 4. Always choose an ammeter range that allows the test current to be read in the area from 20% to 80% of the maximum. This provides greatest accuracy of readings, least chance of overrange, and optimum current latch operation.
- 5. To obtain maximum output current from the test set, especially when using output cables, it is important to minimize both input and output impedance. This can be accomplished by using the largest cable size possible, or using multiple cables in parallel, to reduce resistance, and by keeping cables close together by tying or twisting, to reduce inductance.
- 6. For all breaker test sets, much better output current waveform and stability can be achieved when the controls of the test set are in their higher positions. To test smaller breakers, it is helpful to introduce additional output impedance, by using some length of adequate, but lighter gauge, wire to connect the breaker to the output connections. When using tap 1, the Vernier control should always be at least at 30% to produce desired test current.

SINGLE POLE MOLDED CASE CIRCUIT BREAKERS

Timing Test

- 1. Consult breaker manufacturer's literature to determine any necessary precautions and expected test results. A test current of three times the rating of the breaker should be used for this test.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Setup MAC-20 for C.L. Maint (MAINTAIN on).
- 4. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 5. Set TIMEBASE to CYCLES.
- 6. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 7. Press PRESET again to return to normal mode.
- 8. Select MEMORY mode.
- 9. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the desired test current is read on the ammeter. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.
- 10. Press RESET button.
- 11. Set TIMEBASE to SECONDS.
- 12. Select MAINTAIN mode.
- 13. Press and release INITIATE key; OUTPUT ON light should glow, timer should run, and current display should read desired output current.
- 14. While test is running, observe current reading. If necessary, adjust to correct value by using Vernier control, or press MAINTAIN key for current hold.
- 15. When breaker trips, the test set output should de-energize, timer should stop, and OUTPUT ON light should turn off.
- 16. Read and record trip current and trip time. Compare to manufacturer's time/current curve.
- 17. If test is to be repeated, make sure that breaker cools completely.
- 18. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Pick-Up of Instantaneous Element

- 1. Consult breaker manufacturer's literature to determine any necessary precautions and expected test results. Check the breaker's instantaneous setting. Pickup should occur at about that current.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Setup MAC-20 for C.L. Maint (MAINTAIN on).
- 4. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 5. Set TIMEBASE to CYCLES.
- 6. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 7. Press PRESET again to return to normal mode.
- 8. Select MEMORY mode.
- 9. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the circuit breaker trips instantaneously. This is the approximate pickup point. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.
- 10. Close breaker under test.
- 11. By repeating the test, determine the MINIMUM SETTING of the OUTPUT CONTROL, at which the breaker under test opens immediately, whenever the INITIATE button is depressed.
- 12. Read and record ammeter reading as instantaneous pick-up of the breaker.
- 13. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Instantaneous Trip Time Test

- 1. Perform Instantaneous Pickup Test as outlined above.
- 2. Adjust controls to obtain current above pickup, at approximate desired multiple of rating.
- 3. Close breaker under test.
- 4. Press the INITIATE button. Breaker should trip instantaneously.
- 5. Read and record timer and ammeter readings as instantaneous trip time and current.
- 6. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

MULTI-POLE MOLDED CASE CIRCUIT BREAKERS

Timing Test

- 1. Consult breaker manufacturer's literature to determine any necessary precautions and expected test results. A test current of three times the rating of the breaker should be used for this test.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Connect appropriate output tap to one pole of breaker under test.
- 4. Setup MAC-20 for C.L. Maint (MAINTAIN on).
- 5. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 6. Set TIMEBASE to CYCLES.
- 7. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 8. Press PRESET again to return to normal mode.
- 9. Select MEMORY mode.
- 10. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the desired test current is read on the ammeter. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.
- 11. Press RESET button.
- 12. Set TIMEBASE to SECONDS.
- 13. Select MAINTAIN mode.
- 14. If desired, N.C. mode may be used; connect contacts leads to an unused pole of the breaker.
- 15. Press and release INITIATE key; OUTPUT ON light should glow, timer should run, and current display should read desired output current.
- 16. While test is running, observe current reading. If necessary, adjust to correct value by using Vernier control.
- 17. When breaker trips, the test set output should de-energize, timer should stop, and OUTPUT ON light should turn off.
- 18. Read and record trip current and trip time. Compare to manufacturer's time/current curve.
- 19. Repeat above tests for other poles of the breaker. Allow time for breaker to cool. Note: it is acceptable if all poles of the breaker trip within +/- 15% of the

manufacturer's time range for the value of test current chosen. All poles of the breaker need not trip in exactly the same amount of time.

20. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Pick-Up of Instantaneous Element

- Consult manufacturer's literature to determine any necessary precautions and expected test results. Check the breaker's instantaneous setting. Pickup should occur at about that current.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Setup MAC-20 for C.L. MOM.
- 4. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 5. Set TIMEBASE to CYCLES.
- 6. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 7. Press PRESET again to return to normal mode.
- 8. Select MEMORY mode.
- 9. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the circuit breaker trips instantaneously. This is the approximate pickup point. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.
- 10. Close breaker under test.
- 11. By repeating the test, determine the MINIMUM SETTING of the OUTPUT CONTROL, at which the breaker under test opens immediately, whenever the INITIATE button is depressed.
- 12. Read and record ammeter reading as instantaneous pick-up of the breaker.
- 13. Repeat the above test for the other poles of the circuit breaker.
- 14. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Instantaneous Trip Time Test

- 1. Perform Instantaneous Pickup Test as outlined above.
- 2. Adjust controls to obtain current above pickup, at approximate desired multiple of rating.
- 3. Close breaker under test.
- 4. Press the INITIATE button. Breaker should trip instantaneously.
- 5. Read and record timer and ammeter readings as instantaneous trip time and current.
- 6. Repeat the above test for the other poles of the circuit breaker.
- 7. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

LOW VOLTAGE POWER CIRCUIT BREAKERS

Nearly all low voltage power circuit breakers are multi-pole devices. The trip units may be either magnetic with a dash pot or solid-state electronic devices. Test procedures would be the same for either type. However, electronic trip types may incorporate ground fault protection. If so, it is necessary to either block or by-pass ground fault protection when tests are being conducted on phase fault characteristics. This is because the tests are being conducted on one pole at a time, and the ground fault protection would consider this operation to be a ground fault.

Most low voltage power circuit breakers have either Long Time Delay, and Short Time Delay, and/or instantaneous tripping characteristics. In this case, for test purposes, it is recommended that the instantaneous unit be set in its maximum calibration. This is to prevent an instantaneous trip while trying to set the current for the Short Time Delay characteristic.

Electrical tests to be conducted on low voltage power circuit breakers include timing test on L.T.D.; timing test on S.T.D.; and instantaneous pick-up. It is recommended that the magnitude of test current for the L.T.D. timing test be 3 times coil rating or transformer tap. For timing test on S.T.D. the test current should be about 1.5 times the S.T.D. setting. In both cases, tripping time should be within the manufacturer's published time range. Pick-up of the instantaneous unit should be +/- 10% of the

setting for the electronic device and +/- 20% of the setting for the magnetic device.

Testing the instantaneous trip on very large circuit breakers set at or near maximum calibration may sometimes exceed the capacity of the test set. In most cases, the instantaneous element has several calibration marks between "LO" and "HI". In such cases, it may be necessary to perform the test at one of the lower calibration marks. Always be sure to record the "AS FOUND" settings and return the adjustments to these settings after testing. To perform testing, adjust the screw to a lower setting that

allows the test set to verify that the unit will pick up. If the instantaneous unit picks up at the proper current at a lower calibration point, it may be assumed that the unit will operate properly at higher calibration points. This has been verified by manufacturers and by means of field tests.

Specific test procedures for all electrical tests are outlined on the following pages.

Timing Test, Long Time Delay

- 1. Consult breaker manufacturer's literature to determine any necessary precautions and expected test results. A test current of three times the rating of the breaker should be used for this test.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Connect appropriate output tap to one pole of breaker under test.
- 4. Setup MAC-20 for C.L. Maint (MAINTAIN on).
- 5. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 6. Set TIMEBASE to CYCLES.
- 7. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 8. Press PRESET again to return to normal mode.
- 9. Select MEMORY mode.
- 10. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the desired test current is read on the ammeter. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.
- 11. Press RESET button.
- 12. Set TIMEBASE to SECONDS.
- 13. Select MAINTAIN mode.
- 14. If desired, N.C. mode may be used; connect contacts leads to an unused pole of the breaker.
- 15. Press and release INITIATE key; CLOSE or OUTPUT ON light should glow, timer should run, and current display should read desired output current.
- 16. While test is running, observe current reading. If necessary, adjust to correct value by using Vernier control, or press MAINTAIN key for current hold.
- 17. When breaker trips, the test set output should de-energize, timer should stop, and OUTPUT ON light should turn off.
- 18. Read and record trip current and trip time. Compare to manufacturer's time/current curve. If necessary, adjust the trip unit and repeat the test.
- 19. Repeat the above tests for the other poles of the breaker, allowing time for breaker to cool. Note: Results are acceptable if all poles of the breaker trip within the manufacturer's time range for the value of test current chosen. All poles of the breaker need not trip in exactly the same amount of time.

20. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Timing Test, Short Time Delay

Note: The breaker's trip time for short time delay will always be less than 30 cycles and may be as low as 4-5 cycles. Therefore, setting test current will require some practice. However, the magnitude of the test current is not critical; for instance, if the S.T.D. is set for 1000 amperes, there will be little or no difference in timing if a test current of 1500, 2000 or 2500 amperes is used.

Set up of controls is the same as for timing test L.T.D. Consult breaker manufacturer's literature to determine any necessary precautions and expected test results.

- 1. Follow steps 1 through 8 under Timing Test Long Time Delay.
- 2. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the desired test current is read on the ammeter. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.
- 3. Press RESET button.
- 4. Set TIMEBASE to SECONDS.
- 5. Select MAINTAIN mode.
- 6. If desired, N.C. mode may be used; connect contacts leads to an unused pole of the breaker.
- 7. Press and release INITIATE key; OUTPUT ON light should glow, timer should run, and current display should read desired output current.
- 8. Breaker should trip within 30 cycles (0.5 seconds). When breaker trips, the test set output should de-energize, timer should stop, OUTPUT ON light should turn off.
- 9. Read and record trip current and trip time. Compare to manufacturer's time/current curve. If necessary, adjust the trip unit and repeat the test.
- 10. Repeat the above tests for the other poles of the breaker, allowing time for breaker to cool. Note: Results are acceptable if all poles of the breaker trip within the manufacturer's time range for the value of test current chosen. All poles of the breaker need not trip in exactly the same amount of time.
- 11. Shut down test set, disconnect breaker, and prepare for subsequent

testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Pick-Up of the Instantaneous Unit

- 1. Consult breaker manufacturer's literature to determine any necessary precautions and expected test results. Note: If the instantaneous setting is such that the expected test result is above that which may be easily produced by the test set, a valid test may be performed by adjusting the setting to its minimum value. At the end of the test, restore the instantaneous setting to its specified value.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Setup MAC-20 for C.L. Maint (MAINTAIN on).
- 4. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 5. Set TIMEBASE to CYCLES.
- 6. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 7. Press PRESET again to return to normal mode.
- 8. Select MEMORY mode.
- 9. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until circuit breaker trips instantaneously. This is the approximate pickup point. If insufficient current is obtained at maximum position of the Vernier, set OUTPUT TAP control to next higher tap, return the Vernier to zero, and continue.
- 10. Close breaker under test.
- 11. By repeating the test, determine the MINIMUM SETTING of the OUTPUT CONTROL, at which the breaker under test opens immediately, whenever the INITIATE button is depressed.
- 12. Read and record ammeter reading as instantaneous pick-up of the breaker.
- 13. Repeat the above test for the other poles of the circuit breaker.
- 14. If trip settings were modified for test purposes, restore them to their original values.
- 15. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

Instantaneous Trip Time Test

- 1. Perform Instantaneous Pickup Test as outlined above.
- 2. Adjust controls to obtain current above pickup, at approximate desired multiple of rating.
- 3. Close breaker under test.
- 4. Press the INITIATE button. Breaker should trip instantaneously.
- 5. Read and record timer and ammeter readings as instantaneous trip time and current.
- 6. Repeat the above test for the other poles of the circuit breaker.
- 7. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

MOTOR OVERLOAD RELAYS

The motor overload relay is designed to provide overload protection for a motor; therefore, it offers only one time/current characteristic, which is essentially a long-time delay. It may be multi-pole; however, most relays are single pole. In the case of a multi-pole device each pole is tested individually as in the case of a multi-pole direct acting circuit breaker.

The motor overload relay contains two separate circuits. The current carrying circuit which contains the relay's operating coil or heater. The control circuit which contains a set of contacts; these contacts open when the relay "operates". It is the opening of these control circuit contacts that deenergizes the motor starter holding coils, thus allowing the starter contactors to open, shutting down the motor.

Timing Tests

- 1. Consult the relay manufacturer's literature to determine any necessary precautions and the expected timing test results. The test current should be 3 to 4 times the rating of the relay operating coil or heater.
- 2. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 3. Setup MAC-20 for C.L. Maint (MAINTAIN on).
- 4. Set MAC-20 RANGE to lowest range that is greater than desired test current.
- 5. Set TIMEBASE to CYCLES.
- 6. Press PRESET key. Adjust preset time to 5.0 cycles. This value may be set higher or lower, depending on trip characteristics of breaker.
- 7. Press PRESET again to return to normal mode.
- 8. Select MEMORY mode.
- 9. Connect the relay operating coil or heater circuit terminals to the breaker test set common terminal and the proper output tap terminal.
- 10. Connect the relay control circuit contacts to the CONTACTS terminals and determine that they are closed by observing the CONTINUITY lamp.
- 11. Repeatedly jog the INITIATE button, while adjusting the OUTPUT CONTROL higher, until the desired test current is read on the ammeter. If insufficient current is obtained at maximum position of the Vernier, set the OUTPUT TAP control to the next higher tap, return the Vernier to zero, and continue.

- 12. Press RESET button.
- 13. Set MAC-20 to N.C. mode. Set MAINTAIN on.
- 14. Press and release INITIATE button; OUTPUT ON light should glow, timer should operate, and current should indicate on display.
- 15. When the relay control circuit contacts open, the test set output should deenergize and the timer should stop.
- 16. Read and record the test value of current and the time of the test. Compare the results to the manufacturer's specifications. If possible, adjust the relay. Usually, if the relay time of operation is incorrect, it is necessary to replace the relay heater with one of the recommended sizes for the motor being protected. If a check test is desired, the relay must be allowed to cool for a period of time (approximately 15 to 30 minutes).
- 17. For a multi-pole relay, repeat the above tests for the other relay poles.
- 18. Shut down test set, disconnect breaker, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

RATIOING CURRENT TRANSFORMERS

To conduct a ratio test on a current transformer, a good multi-range bench ammeter is required in addition to the breaker test set. The breaker test set supplies primary current to the transformer and the bench ammeter is used to read the transformer secondary current. It is suggested that a graph of the test results be plotted. Primary current should be the abscissa and corresponding secondary current the ordinate of the graph.

WARNING: It is extremely important that the secondary circuit of the current transformer never be broken or opened while the primary circuit is energized. Should the secondary circuit of an energized current transformer be opened, the collapsing magnetic field generates an extremely high voltage across the open ends of the circuit until the resultant arc is extinguished. Under these conditions, personal injury and/or damage to the current transformer under test are probable.

- 1. Follow steps 1 through 16 in pre-test installation and setup, as required, to set up the breaker test set.
- 2. Connect the current transformer primary terminals to the breaker test set common terminal and the proper output tap terminal.
- 3. Connect the current transformer secondary terminals to the bench ammeter.
- 4. Set the MAC-20 to N.O. mode. Set MAINTAIN on.
- 5. Press and release INITIATE button; CLOSE or OUTPUT ON light should glow, timer should operate, and current should indicate on display.
- 6. Adjust OUTPUT CONTROL higher until the desired current transformer primary current is read on the MAC-20 ammeter. Adjust OUTPUT TAP switch, if necessary, to obtain required current.
- 7. Read and record the readings on both the breaker test set (MAC-20) and the bench ammeter.
- 8. Repeat steps 6 and 7 until the desired number of test points have been obtained. Note: It is suggested that test points be obtained in multiples of the current transformer rating. For instance, for a 200/5 current transformer, test points would be obtained at primary currents of 200, 400, 600, 800 amperes, etc.
- 9. Shut down test set, disconnect CT, and prepare for subsequent testing or relocation according to steps 18 through 22 in pre-test installation and setup outlined above.

SECTION V

SERVICE INFORMATION AND DOCUMENTATION

SECTION V

SERVICE INFORMATION AND DOCUMENTATION

MAINTENANCE AND CALIBRATION OF THE PI-2500 and PI-5000

The PI-2500 and PI-5000 require only minimal maintenance. Mechanical components such as casters and hinges may need periodic lubrication. External surfaces should be kept clean, and screws on access panels should be checked for tightness. The output stab adapter plates and interconnecting bus connections must be kept clean and smooth, and studs should be maintained in good condition. Poor output connections are the main cause of overheating and poor performance.

Occasionally, or more often if used in dusty environments, it is important to inspect and clean interior components. Disconnect from all sources of power and remove all access covers. Carefully blow out any dust and inspect all connections for tightness and any sign of deterioration due to corrosion or overheating.

The fans should be cleaned with a damp rag and checked for signs of bearing wear by spinning.

Vernier brushes should be inspected for signs of wear or overheating and cleaned or replaced as required.

Calibration of the PI-2500 and PI-5000 requires accurate current measurement in 1000A, 2000A, and 4000A connections. Adjustment may be accomplished by means of the potentiometers accessible through the PI-2500 output face plate.

Special Calibration Instructions

The pots on the configuration switch PCB are used to adjust the calibration for 1000A, 2000A, and 4000A modes. They should be set so that the readings are one half or one fourth the readings in full parallel configuration.

There is a difference in calibration between the PI-2500 and the AUX-5000. Two pots are provided on the PI2500 control PCB to adjust for this difference. The pot marked AUX should be used when the AUX5000 is connected, and the pot marked MAIN is used for just the PI-2500.

The MAC-20 should be calibrated for its standard input value.

PARTS LIST (PI-2500):

The overall schematic is on the following pages. The parts list is provided below. Please refer to both when ordering replacement parts.

ITEM	QTY	DESCRIPTION	REF DES	ETI Number
1	2	Contactor, 3PST, 90A	K1-K2	M-C378
2	2	Contactor, 3PST, 40A	K3-K4	M-C377
3	1	Contactor, 4PST, 40A	K5	M-C374
4	1	Transformer, paralleling	Т3	M-C278
5	2	Transformer, CT, 50:5	T4,T5	M-C231
6	1	Timing belt, 21"		M-C227
7	1	CT Assembly		S-B165

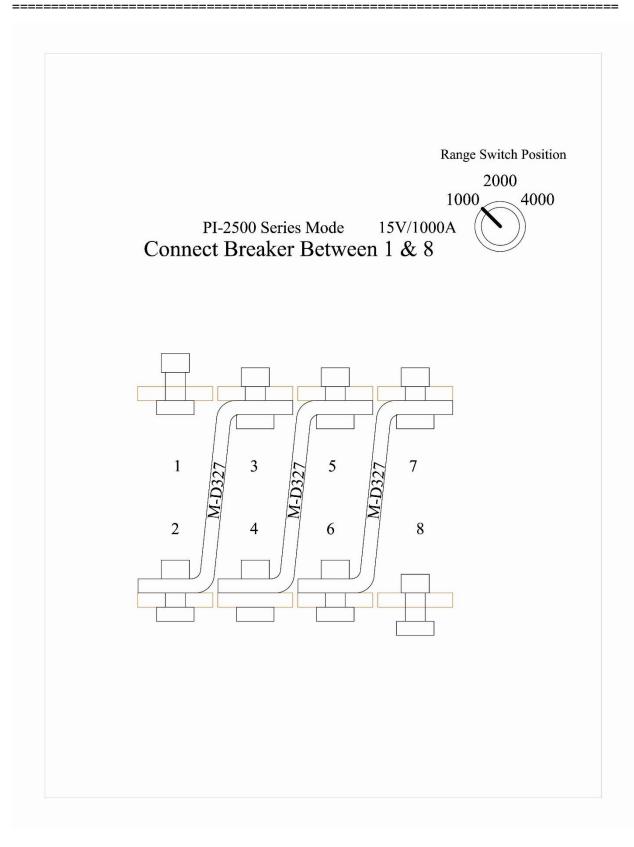
PARTS LIST (AUX-5000):

The overall schematic is on the following pages. The parts list is provided below. Please refer to both when ordering replacement parts.

ITEM	QTY	DESCRIPTION	REF DES	ETI Number
1	2	Contactor, 3PST, 90A	K1-K2	M-C378
2	6	Contactor, 3PST, 30A	K3-K8	M-C377
3	4	Bolt Support		M-D202R1

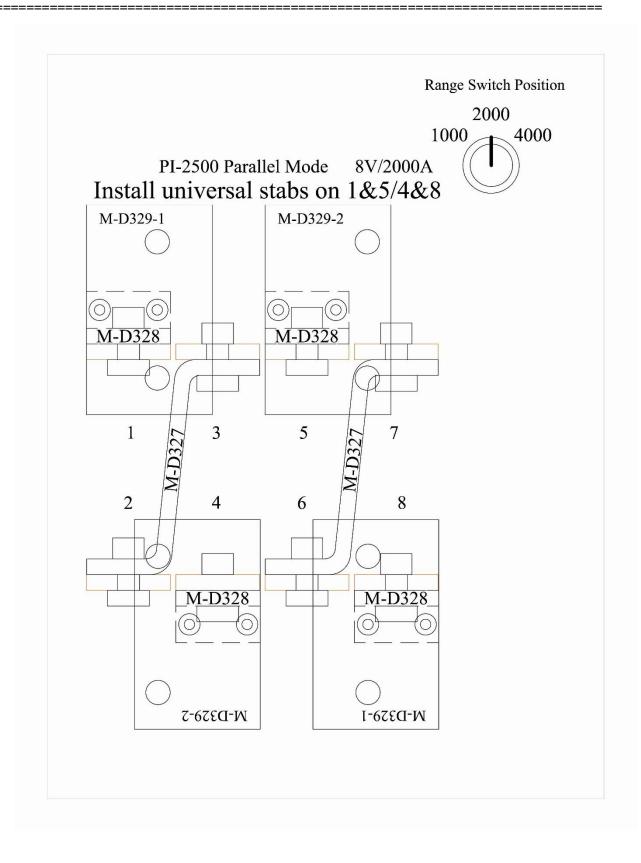
PARTS LIST (Indicator Control Panel):

The overall schematic is on the following pages. The parts list is provided below. Please refer to both when ordering replacement parts.

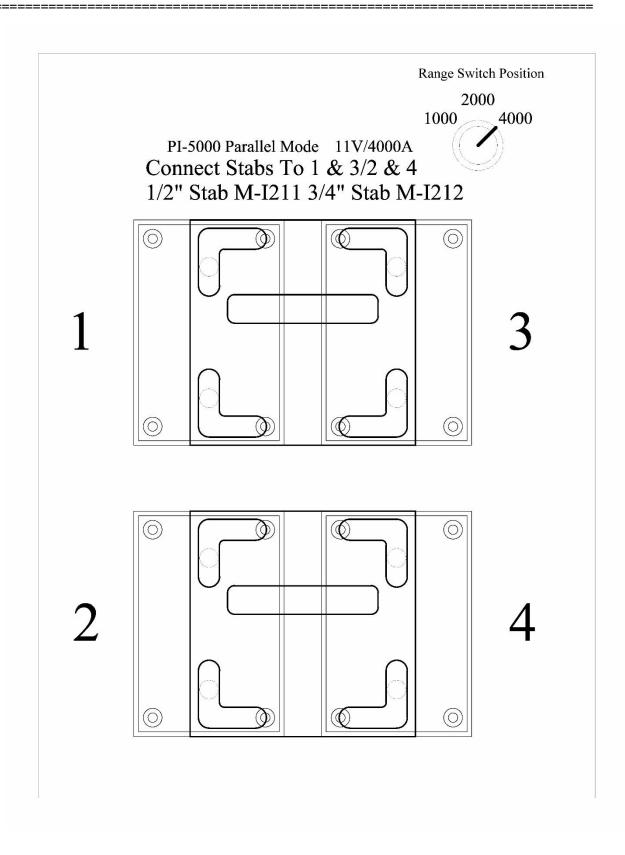

ITEM	QTY	DESCRIPTION	REF DES	Part Number
1	1	Power Supply	PS1	M-E101
2	1	Digital Panel Meter	MI	M-C163
3	1	Relay, DPDT, 120VAC	K1	M-C147
4	3	Relay, DPDT, 12 VDC	K2-4	M-C149
5	4	Switch, pushbutton, lighted	S1-S4	M-C110
6	1	Indicator	DS4	M-C111
7	2	Lens, Red	XS2, XDS2	M-C112
8	2	Lens, Green	XS1, XS3	M-C113
9	1	Lens, Yellow	XDS4	M-C114
10	1	LED, red	DS5	M-B251
11	1	Receptacle, 37 pin, male	ונ	M-C140
12	37	Pin, male, #24-20	XJI	M-A127
13	1	Control panel PCB Ass'y	PCB1	S-B169
14	1	Relay PCB Ass'y	PCB2	S-B124
15	1	Metering PCB Ass'y	PCB3	S-B122
16	1	Interconnect cable, 10 pos	Pl	S-A107
17	2	Binding post, black	BP1,2	M-B174
18	1	Terminal strip, 8 pos	TSI	M-B259
19	2	Handle, brass, nickel plated, 3"		M-C174

OVERALL SCHEMATIC (PI-2500)

==


====

==



WARRANTY

Electrical Test Instruments, LLC, will correct any defect in workmanship or material for two years after date of purchase of any Electrical Test Instruments product. Such corrective measures will be limited to repairing or replacing the unit, at Electrical Test Instruments' option. This limited warranty shall not apply to equipment which has been subjected to negligence, accident or damage by operation, maintenance or storage, or to non-normal use or service. This limited warranty does not cover reimbursements for transportation, removal, installation, repair or replacement, except as may otherwise be specifically agreed to in writing by Electrical Test Instruments. The foregoing is in lieu of all other warranties expressed or implied, and all other obligations or liabilities whether arising under contract, negligence or otherwise, on the part of Electrical Test Instruments. In no event shall Electrical Test Instruments be liable for consequential or special damages, including but not limited to loss of use, loss of income, loss of profit or cost of replacement.